
AD-A 197 716 opR 0 UMENTArON PAGE

unclassified 4 - E MARKINGS i"

2a SECURITY CLASSIFICATION AUTHORI Y " I C #. DISTRIBUTION IAVAILABILITY OF REPORT

$-. 2D DECLASS)FICATION /DOWNGRADING , cMULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITOPING ORGANIZATION REPORT NUMBER(S)

AFGL-TR-88-0171

6j. NAME OF PERFORMING ORGANIZATION 6t) OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if applicable)

Air Force Geophysics Laboratory PHS

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)
LHanscom AFB

Ma.ssachusettai, 01731-5000

a. NAME OF FUNDING/SPONSORING 18b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8- c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK jWORK UNIT
ELEMENT NO NO. NO. ACCESSION NO.

61102F 2311 G3 22

11 ITILE (include Security Classification)
Signal Transfer Function of the Knox-Thompson Speckle Imaging Technique

12 PERSONAL AUTHOR(S)

O.skar von der Luhe
13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) ji5 PAGE COUNT

R.-print I FROM TOI 1988 August 15 1 9

16 SUPPLEMENTARY NOTATION

Reprioted from Journal of the Optical Society of America A, Vol. 5, page 721, May 1988

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
P FIELD GROUP SUB-GROUP

Speckle interferometry , ' "-

\19 ABSTRACT (Continue on reverse if necessary and identify by block number)

lhe transfer function associated with the Knox-Thompson speckle imaging technique is
investigated. Numerical model transfer functions using log-normal statistics for

perturbations of the complex wave front, the near-field approximation, and a Kolmogorov

spectrum for atmospheric turbulence statistics are presented. Simple approximations for the

trans.-fer function are discussed. As with the transfer function of Labeyrie's speckle

interferometry technique, the portion beyond the seeing limit can be represented as the
transfer function of an unaberrated telescope times a seeing-dependent constant. An

* idditirnal factor depends on the frequency shift of the Knox-Thompson cross spectra. The

influence of the frequency shift on the reconstructed phase error is discussed for simple

reconstruction problems. ., I .... ..

20. LSTRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED El SAME AS RPT. 0 DTIC USERS Unclassified

(2.a NAMEQF.kOIlL 22b. rE' EPH'E "i Ae£Cr SMOI I au fr"IBLE INDIVIDUAL E AreaCore) 22c. YMBOL
ir (617) TRW55-rao~J2

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All othe, eiit,.-o are obsolete. Unclass i-ied

On s1fj



Reprinted from Journal of the Optical Society of America A, Vol. 5, page 721, May 1988
Copyright © 1988 by the Optical Society of America and reprinted by permission of the copyright owner

Signal transfer function of the Knox-Thompson speckle
imaging technique

Oskar von der Luhe

Solar Research Branch, U.S. Air Force Geophysics Laboratory, Sacramento Peak, Sunspot, New Mexico 88349

Received May 6, 1987; accepted January 13, 1988

The transfer function associated with the Knox-Thompson speckle imaging technique is investigated. Numerical
model transfer functions using log-normal statistics for perturbations of the complex wave front, the near-field
approximation, and a Kolmogorov spectrum for atmospheric turbulence statistics are presented. Simple apjrxi-
mations for the transfer function are discussed. As with the transfer function of Labeyrie's speckle interferometry
technique, the portion beyond the seeing limit can be represented as the transfer function of an unaberrated
telescope times a seeing-dependent constant. An additional factor depends on the frequency shift of the Knox-
Thompson cross spectra. The influence of the frequency shift on the reconstructed phase error is discussed for
simple reconstruction problems. 0

% 1. INTRODUCTION domain. If Fi and F 0 are the two-dimensional Fourier trans- I

The Knox-Thompsoni (KT) speckle imaging technique forms of i and I0, respectively, then

plays a significant role in present methods of high-resolution Fi(f) = Fo(f)Si(f), (2)
. optical astronomical imaging. Speckle imaging techniques

permit the recovery of small-scale information on astronom- for which Si denotes the instantaneous optical transfer func- iii
ical sources that normally is destroyed by the deleterious tion, i.e., the Fourier transform of PSFi(x), which depends

effect of turbulence in the Earth's atmosphere on the imag- on the telescope and the atmosphere, and f denotes a two-
ing process. Unlike Labeyrie's 2 speckle interferometry, dimensional spatial frequency. The essence of the KT tech-
which measures the autocorrelation of the observed intensi- nique is to evaluate the average

tv distribution, the KT technique permits the recovery of 1 N
the full information on the observed intensity structure. N > Fi(f)Fi'(f- A)
Because the technique is relatively simple to apply com- 1

pared with other techniques, such as speckle masking,3 it has 1 N

found wide application in high-resolution imaging astrono- = F 0 (f)F 0 *(f - A) X N Si(f)Si*(f - A) (3)

my, ranging from stellar sources4 to extended objects, such
as the Sun. 5  

for a fixed spatial-frequency spacing A. N is the number of
In speckle interferometry and speckle imaging, a large Fourier transforms processed. Both sides of Eq. (3) are

number of short-exposure pictures of the source of interest complex functions. There is some controversy about what
are taken. Each picture is affected by atmospheric turbu- to call quantities such as F(f)F*(f - A); the term cross
lence, and if the exposure is short compared with the atmo- spectrum seems to prevail, so I shall use it throughout this

* spheric correlation time (of the order of 10 msec), the ob- paper.
served intensity distribution of the ith picture, Ii, may be Equation (3) shows that the observed average cross spec-
represented by the true, unaberrated intensity distribution, trum is given by the object cross spectrum multiplied by an
1(, convolved by a randomly speckled point-spread function, average telescopic-atmospheric term, the cross-spectrum

PSFi, which typically spreads over 1 arcsec: transfer function (CTF). Knox and Thompson realized

li(x) = 10 (x) * PSFi(x), (1) that, in the ensemble-average limit N - =, the CTF is a* purely real function as long as A is small compared with the

where x denotes a two-dimensional focal-plane coordinate seeing cutoff frequency f,, which is reciprocal to the seeing
and * denotes the convolution operation. When long expo- limit x,. The Fourier phase of the observed cross spectrum
sures are taken, the speckles average out, and the effective is equal to the phase of the object cross spectrum; the object
point-spread function is smooth and does not permit the Fourier phase may be recovered from the observed cross-
recovery of detail smaller than its average diameter x,, called spectrum phase by means of suitable integration techniques.
the seeing limit. If the CTF is known, Fourier amplitudes may be also recov-

* The speckles in the point-spread function are of the size of ered from the cross spectra [Eq. (3)]; amplitudes and phases
the theoretical resolution element of the instrument, and a can be recombined and inversely transformed to obtain the
suitable statistical analysis of their modulation permits the reconstructed object intensity distribution. Because of the
recovery of object structure information up to the resolution better signal-to-noise ratio, Fourier amplitudes are com-
limit. Such an analysis is frequently done in the Fourier monly obtained by using Labeyrie's 2 method of analyzing
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88 8 18 092



722 J. Opt. Soc. Am. A/Vol. 5, No. 5/May 1988 Oskar von der Libe

% cross spectra for A = 0 (referred to as the Labeyrie case in W(r) denotes the complex amplitude transmittance of the
this paper). telescope's entrance pupil and describes the telescope aber-

The accuracy to which phases can be recovered from ob- rations. i(r) denotes the instantaneous phase retardation
served cross spectra depends on A, because the amplitudes that is due to atmospheric turbulence. r denotes a two-
of the observed cross spectra decrease as A increases. As a dimensional pupil-plane coordinate. The coordinate f rep-
rule of thumb, Knox and Thompson' require that A be resents a two-dimensional angular frequency with units of
smaller than 0.5 f,; Fried 6 requires that A < 0.2 f,. A more line pairs per radian. X is the light wavelength and j = -
accurate description of how cross spectra amplitudes are The statistics of the random wave-front perturbations are
affected by the choice of A is required in order to study the represented by the phase structure function D(p), defined as
dependence of phase errors on A. Also, the choice of A
imposes a lower limit on the size of the observed field of view. D(p) = ([o(r) - 0(r - p)] 2 ). (5)
If an extended source, such as the solar surface, is observed, Angle brackets denote ensemble averaging. We shall use
a small field of view is required in order to match the size of Fried's'( expression for the structure function, which is
the isoplanatic patch.6.7 Once the field size is selected, A based on a Kolmogorov spectrum of atmospheric turbu-
cannot be made smaller than the fundamental frequency lence 2 :
given by that size, and it is conceivable that under unfavor-
able seeing conditions the KT algorithm will fail. Also, DI =5688
variations of the KT technique use sets of cross spectra with D(P) = 6.88 ro(6)

varying A,8 and in these cases it is important to know how
% large the modulus of A can be made without penalty. r0 is Fried's seeing parameter and is related to the angular

In this paper I present an extension of Korff's 9 approach seeing cutoff frequency by f., = ro/X. Occasionally, we shall
for deriving the transfer function associated with the La- use the fact that Eq. (6) depends only on the modulus Is[.
beyrie technique to the transfer function that acitermines In order to simplify the mathematical expressions without

* the signal of the KT technique. Neither Korff's result nor suffering a loss of generality, we shall redefine coordinates.
the general soluti(n has an analytical expression, and each We measure angular frequencies in units of the cutoff fre-
must be calculateo numerically. Results of such calcula- quency of the instrument, f, = D/X, where D is the entrance
tions are presented for a circular, unocculted entrance pupil pupil diameter, and we then set D = 1. The new Fourier-
of an aberration-free telescope. In addition, approxima- space variable is now q = Xf/D = Xf, and, for the frequency
tions for the cases of small and large spatial frequencies are region of interest, 0 < Iqi < 1, where Iq represents the
discussed, which permit a simpler estimate of the loss of magnitude of the two-dimensional vector q. Also, Fried's
cross-spectrum signal as A is increased, parameter is measured in units of the telescope diameter, so

The treatment described here is based on the assumption we set a = ro/D. We can express Eq. (4) in these variables
of log-normal statistics for the complex wave amplitude per- and obtain
turbations, the near-field approximation,9 -1 1 and a Kolmo-
gorov spectrum for atmospheric turbulence.' 2 Barakat et Si(q) - I W(r + q/2)W*(r - q/2)
al.' 3 discussed the influence of aberrations of atmospheric as fJ
well as instrumental origin on KT cross-spectrum phases for X expj[oi(r + q/2) - oi(r - q/2)]Jdr. (7)
a one-dimensional entrance pupil. They assumed a Gauss-
ian correlation function to describe the second-order statis- The domain of integration is limited by the terms W, which

, tics of wave-front perturbations. Such an analysis is cer- vanish outside the area of the entrance pupil, i.e., for Irl > 1/
tainly adequate for the study of the effects of instrumental 2. The structure function, recast in the new variables, be-
aberraticn. I largely neglect those in this paper, and I con- comes
centrate on the effects of atmospheric turbulence for a two-

* dimensional entrance pupil. The assumptions for the wave- D(p) = 6.88 (8)
front statistics that I use are generally believed to be more a

relevant to astronomical observations,i and there is sub-

stantial observational evidence to support them. 4, 15 An
excellent treatment of the statistics of wave-front perturba- 3. DERIVATION OF THE SIGNAL TRANSFER

tions caused by turbulent media can be found in the review FUNCTION
* by Bertolotti et al.16  

The objective of this section is to derive the ensemble aver-
age of the transfer function CTFA(q) of the cross-spectrum

2. NOTATION signal by using Eq. (7). The general result is presented in
s f Subsection 3.A, Eq. (11). Approximations of the cases for

By using log-normal statistics and near-field conditions, 9,1 small and large spatial frequencies are discussed in Subsec-
the instantaneous optical transfer function in a symmetrical tion 3.B; the results are presented in Eqs. (20) and (27),
formulation may be expressed as respectively. A description of the numerical evaluation of

Eq. (11) is given in Subsection 3.C.

S(f)=J i]W(r )W(2r ) A. General Analysis

From Eq. (3), it is seen that the CTF is given by
X ex Oi r+ 'f) - oi~ - '-)]}Jdr. (42 2 CTF,&(q) = (S,(q)S,*(q - A)). (9)

iim m i
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For convenience, we drop the frame number index i in en- therefore W is complex. If aberrations are disregarded, the
semble-average expressions, Inserting Eq. (7) into Eq. (9) second integral represents the overlap area of two pupils
yields separated by A. The exponential represents the atmospher-

ic contribution to the signal at zero frequency.
CTFa(q) =(f W(r + q/2)W*(r - q/2) To illustrate this result, let us assume an aberration-free

f telescope with a circular, unobscured entrance pupil, for
+. a4 q/2) - ,,,r - q/2)jjdr which

X W I4r' + (q - )/21 Wtr' - (q - )/21 1 if Il < /2

W(r) = 1I(r) '/ if Ir = '/2 (14)

x exp(jl-o[r' + (q - A)/21 0 if Iri > '/2

+ 0lr' + (q - A)/2]1)dr'. ( 0) The signal at zero frequency then becomes

The general result for the transfer function of KT cross CTF&(0) = l [cos - A - A(1 - A2)1/]exp 3.44 ( •
spectra is obtained in Appendix A by extending Korff's9

derivation to non 7ro-freqiency offsets A The final result (1O)
is given by

W _uis gi +en -bq Equations (14) and (15) indicate that, compared with the
CTFI(q) = f w( +8+q)w*( - )Labeyrie case for which A = 0, the signal decreases with

f 2 / f f increasing A. In what follows, the area-normalized signal

X W*(a- + q - A) ( - - q + A da transfer function will be presented, which is unity at the

-2 2 frequency origin for the Labeyrie case. This presentation
* permits us to assess correctly the loss of signal over the entire

X expl-/ 2[D(q) + D(q - A) + D(b + A/2) frequency range as A is increased.

'" + DO - A/2) - D(q - A/2 + 6)+,, DDq /+2. The Signal at Small Spatial Frequencies
,,, - D(q - A/2 - )]1d8. (11) The regime for small spatial frequencies Iql << a can be

Korff's result is reproduced in Eq. (11) if A is set to zero. approximated by expanding the sum of structure functions

The first part, the integral over a, contains purely instru- in Eq. (11) into a power series. The basic expansion of the

mental terms; it may be represented as the overlap area of structure function [Eq. (6)], up to second order, is given by

four circles (or annuli) representing the transparent portions 6 X + f5/3 6 5/31, + 5 [-L
of the entrance pupil if there are no aberrations. In contrast 6.8 (x Co 6.80)l+~ x

X. \ to Korff's result, however, the centers of the four pupils are
"K not located on the corners of a parallelogram; two of the +(-1_Y(l- cos20 +...ll,

pupils are shifted by the cross-spectrum term A/2 (see Fig. +\l1XII\A 1 /JJ
1). Equation (11) has no analytic solution if Eq. (8) is used (16)
for the structure function, and therefore Eq. (11) must be
solved numerically.

B. Approximations and Special Cases

*1. The Signal at q =0
Setting q = 0 in Eq. (11) yields

S)CTFA() = J 2 W* 6- fA) H 2 2

VX W - -+ A dd expl- '/2 D(A)]. 62- 1

6 (12)-6/

A B

If we restore variables r and r' [see Eq. (A7) in Appendix A],
we obtain

CTFA&(0) = J f IW(r)I2 dr f J W*(r' - A/2) E

X W(r' + &/2)dr' exp[- '/2D(A) ] . (13)

The first integral represents merely the area of the entrance Fig. 1. Geometry of the four-circle overlap. The centers of the
circles are located at the arrowheads labeled A, B, C, and D. Thepupil if its transparency is unity. The second integral might arrows indicate the magnitude and direction of the vectors q, 5, and desbe found to be a complex number and thus might represent a A. In the case shown here, the overlap area is determined by only

sysLematic error term if the telescope has aberrationa and the three circles A, B, a .r

" I I I
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where 0 is the angle beween the vectors x and e and ix >> Ifl. 1( +A/21 \5/3 (16 -A/21 \5/3]

Using relation (16), the sum of structure terms 2 in the 688  )
exponent in Eq. (11) may be expressed, up to first order in q
about 6 ± A/2, as In order to proceed further, we assume that instrumental

{(q)5/: (q -I/3 aberrations are small compared with atmospheric wave-
6.88 front distortions or, equivalently, that W(r) is essentia'Iy

constant over areas with a typical size a. Since the exponn-
5[ [qi (16 - A/2I) 5/ 3 tial contributes to the integration only if 6 < a, the 6 variaole

+ 6 a - 21 cos 0'\ a may be neglected in arguments of W for most parts of the a
S1+ A/21 5/ integration. We may then separate 6 integration from a

16 + A/21 cos 0 /J • (17) integration, and we obtain

6is the angle between q and 6 + A/2, and 0' is the angle CTF&(q) 2 W(G_+ q'w.(a-, q2
.1. between q and 6 - A/2. In general, JAl will be of order a. If

we assume that a << 1, we may approximate 6 - A - 6 and 0' X W* +qA W d6 0 for most part of the 6 integration. Hence, up to first 2
order, 6 f f exp 3 +A/21

N ' 6 .8 8 + (• ( 1 8 )+ _ _ _ _ d ./( 3

1)/+ --A/21 5/3(23)

Therefore the turbulence contribution falls out of the inte- a ) JJ
gration, and We first consider the a integration in relation (23). Depend-

f f +6+q\W*(u+6-q\ ing on the instrumental aberrations, this term may be com-4' CTFA(q) IIIW(+2 2 plex and may therefore contribute a systematic phase term
- /to the observed cross-spectrum phase. If we neglect instru-

X W*( - + -) W( -6 -q+A) dadS mental aberrations and note that q - A is approximately
\ 2 2 equal to q, we obtain

X exp -3 ,4 4 [(q) + (• )5/3] 1  (19) J W(a + q)W* p -)W*(f +q-A

The evaluation of the integrals results in the product of the × W(a- q + A da - S0 (q), (24)
aberration-limited telescopic transfer function St, at spatial 2
frequencies q and q - A. If we disregard instrumental
aberrations and use Fried's 9 result for the average long- where S 0(q) is the diffraction-limited transfer function of
exposure transfer function SLE(q), we finally obtain the instrument.

The integration over 6 can be performed by using the

S-Sa(q)exp 3.44 (q 1)5 Sta.(q - A) substitutions

X exp -3.44 * a

SLE(q)SLE(q - A). (20) 0

3. The Signal at Large Spatial Frequencies 0.2
', We now assume that Iqi >> a, and, by using expansion (16), <

we find, for the sum 2 of exponentials in Eq. (11) up to
second order in 6, 0. a

* [(I__ /1-A2 ("~
16.88 1+ A/21 5/3 /3+ 5/3. .

1! a ) a j a 0.1

+---- ---53 -2( A/2-5/3 0.0 "-------(] 0.00 0.40 0.0 1.20 1.00 2.00

5 62 /A1
+ -- 2 1 lcos •(21) a

3 Iq -A/21' ( 12 c Fi . 2. Decay of signal in the cross-spectrum transfer as a function
Here 0 is the angle between q - A/2 and 6. Again, A will be of1/a. Solid line, approximate result #(A/a), [Eq. (26)1; (3 and M,
of order a and small compared with q. Therefore it is ratios of the CTF models and the STF models for t = 0 and Z = 90

deg, respectively, averaged over the spatial-frequency range fromjustified to assume that q - A q - A/2 q. In this case, -0.8 to 0.8 and multiplied by 0.342; dotted-dashed line, measure-
the terms involving q cancel, and an approximation to Z, to ment of C,,17 multiplied by 0.342; dashed line, measurement of C,,17
first order in 6, is given by with a constant 0.1 subtracted and then multiplied by 0.342.
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P = db = a-dp; (25)
a 2a

thus, inserting Eqs. (25) into the 6 integral and using Eq. (6), -1.0

we obtain -2. 0

r I [(16 + A/21 \5'3 ii_-/21),51]1 .0
jexpl-3.44i( a + ))"+ (lf - i2)sj]- - d 6  "

a 2f f exp[-3.44(Ip + '71I5/3 + 1p _ 715/3)Jdp. (26) "-.

The value of the integral in Eq. (26) is a factor 0 that
depends on A/a. The numerical calculation of O(A/a) is -5.o

presented in Fig. 2. Combining relation (24) and Eq. (26),
we obtain, for the signal transfer function in the high-fre- -.0

quency approximation, -1.00 -0.60 -0.20 0.20 0.60 1 00
relative wave number

CTFA(q)q 1 >>,, " a2 o S0 (q). (27) Fig. 3. CTF models by numerical evaluation of Eq. (11), for = 0
deg and a = 0.1. Dotted line, Lab-yrie case (STF); solid lines,
models for (in descending order of the c,,-rvs) JAI = 0.02, 0.05, 0.1,

4. Combination of Approximate Results 0.15, 0.2. For negative relative wave numbers, the curvos represent

A simple approximation to the overall signal transfer func- CTF models for k

tion is given by combining relations (20) and (27):

* ~~CTF,1q) = SL(q)SLE(q - A) + a2l(4)So(q). (28) 00-____________________

The transfer function may t e represented by the sum of two

components, one describing the low-frequency portion and
the other one describing the high-frequency regime. A simi-
lar approximation exists for the transfer function STF(q) of
the Labeyrie signal," which is reproduced if A is set to zero
in Eq. (28): -. 0

STF(q) = SL 2 (q) + 0.342a 2S0 (q). (29)

-3.0 0

C. Numerical Calculations of Signal Transfer Functions
Equation (11) was evaluated numerically, assuming an aber-
ration-free, unocculted circular entrance pupil [Eq. (14)]. -4.0

The 6 integration is carried out by a simple quadrature -1.00 -0.60 -o.o 0 .20 0.60 1.00

algorithm, in which the coordinate 6 is represented by its relative number
magnitude d and the angle y that 8 makes with q, so a polar Fig. 4. CTF models by numerical evaluation of Eq. (11), for AI =

coordinate system is used. The integration along d is per- 0.05 and a = 0.1. Solid line, k = 0; dotted-dashed line, k = r/4;
formed first. A two-step procedure is applied to determine dashed line, r = /2.

the integrand. First, the value of the exponential in Eq. (11)
is calculated. The result is compared with the approximate
value of the transfer function at large spatial frequencies: 0.0
a 2 (A/a). If the result is smaller than a certain fraction of
the approximate value (10- 4 at the present time) it is consid-
ered insignificant, and the next step is omitted. This proce-
dure speeds up the computation considerably while main-
taining reasonable accuracy that is sensitive to the magni- -2.0

tude of A.
In the next step the a integral is calculated. The integral -3.0

is represented by the area that four circles of radius 1/2 and
with centers located at -(q + 6)/2, (q - 6)/2, (6 - q + A)/2,
and (6 + q - A)/2 have in common. The configuration is
indicated in Fig. 1. Because of the presence of the frequency
shift A, the situation is more complicated than in Korff's9 -.0

case, and the symmetry of the problem is partially de-
stroyed. The outer integration over ' must be carried out -6.0 TT

-1.00 -0.60 -0.20 0.20 0.60 1.00from 0 to r, instead of from 0 to 7r/2 as in Korff's case. reltive wave number

Because of the morP complicated situation, an approach Fig. 5. CTF models by numerical evaluation of Eq. (11). In all
different from Korff's' was used in order to calculate the cases, A = I and = 0. In descending order of the curves, a = 0.05.
overlap area. IX.pending on the configuration of the circle 0.1,0.15, 0.2, 0.25.
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centers, the overlap area can be the area that two, three, or = a the signal in the cross spectra has some 20% of the
four circles have in common. First, the coordinates of the Labeyrie signal.
circle centers are calculated for a given set of values for d and These results may be used to estimate the influence of
- . The two circles that have the largest separation of their instrumental noise on the phases of the cross spectra. To do
centers are determined, and the locations of their points of this, we shall extend the treatment of the problem described
intersection are calculated. Based on the distance of these by Deron and Fontanella1 5  They assumed a zero-mean,
intersection points to the centers of the other two circles, the complex Gaussian additive-noise contribution with a vari-
program decides whether two, three, or four circles deter- ance a2 to the Fourier transforms of the individual frames.
mine the overlap area and which ones are the relevant inter- They showed that the variance o, of the cross-spectrum
section points. Finally, the overlap is computed by combin- phase Pi of a single frame i can be expressed as
ing the areas of triangles, quadrangles, and circular seg-
ments. For the case of circular segments, the area is taken 2 oilmjF(q)F/*q-Afl (30)

from a lookup table rather than being computed in order to f,= [F(q)I2 STF(q)] '

avoid calls to inverse trigonometric functions. The ap-

proach described here results in a relatively short and simple if the noise-free cross-spectrum phase is arbitrarily set to
C source code that avoids frequent calculations of trigono- zero. Im(.) denotes the imaginary part of a complex num-
Wt toMction values, ber. It is assumed in Eq. (30) that the noise amplitude is
Numeric results are presented in Figs. 3-5. Because of small compared with the signal amplitude and that, because

the frequency shift A, the transfer functions are no longer IAl is small, the observed signal magnitude in the denomina-

radially symmetric in q space, and they depend on the angle tor is well represented by the signal of the Labeyrie case A =
that q makes with A. Figure 3 presents the results for = 0. I shall drop the latter assumption and replace the denom-

0; the curve parameter is the magnitude of A. Figure 4 inator by the proper term,
presents the results for = 0, for r = r/4, and for =7r/2,
while A is 0.05. In all cases, a is 0.1, which corresponds to 26m[F,(qjFb*(q-A)

Smoderately good seeing for a meter-class telescope. Figure O, F _ F(31)
5 presents results for a fixed magnitude of A and for varying [JF0 (q)F*(q - A)ICTF&(q)P

seeing parameter a and demonstrates the loss of signal with In addition, Deron and Fontanella showed that the vari-
increasing influence of turbulence. ance of the imaginary part of the observed cross spectrum

Fi(q)Fi*(q - A) is approximately
4. DISCUSSION 2

Figures 3-5 indicate the properties of the signal transfer Iqq j q- l

function for KT cross spectra. The loss of circular symme- and hence
try of the CTF is caused by the anisotropy of the problem,2

"~ ~ ~~~~~~~~~ ~~~~~ trIfteCFi asdb h nstoyo h rbeo F0(q)I2STF(q)

owing to the presence of the frequency shift A; the CTF has o.2 N (33)

symmetry of reflection about the A direction. The maxi- % [JF0 (q)F0*(q - A)ICTFA(q)1 2

mum of the curves moves toward larger spatial frequencies
in the direction of A. The signal decreases dramatically as for a single frame or
1Al increases, under otherwise similar conditions. This be-
havior reflects the decorrelation of the phase contribution of o2 1 (3F4(q)

2STF(q)
the atmosphere to the instantaneous optical transfer func- 0.5 N [IF0(q)Fo*(q - A)ICTFA(q)] 2

tion [Eq. (4)] over scales of order ro/D.
Figure 2 shows the loss of signal as a function of JAI in for an average of N cross spectra.

* various ways. The solid curve represents the factor 0, which If we assume that the modulus of the object spectrum
appears in the approximation of the CTF for large spatial Fo(q) does not vary rapidly over frequency scales of order A
frequencies. The solid markers represent suitable averages (which is essentially true when the observed object has only
of ratios of model CTF's for various values for A and the a small spatial extent), we may set IFo(q)Fo*(q - A)
signal transfer function calculated for = 0 and = 90 deg F0 (q)I2, and we obtain
and multiplied by a constant 0.342. The dashed lines show
measurements of the decrease of the KT signal that were 2 1 oN STF(q) (35)
made by Karo and Schneidermapn. 17 The data were taken o*2 N 1F0 (q)12 [CTF&(q)] 2

from the curve labeled C, in Fig. 3 of Ref. 17. One of the
dashed curves represents the data from Ref. 17 but with a A good representation of the signal-to-noise ratio SNR of
constant tentatively subtracted in order to account for possi- the Labeyrie signal is given by1 9

ble measurement noise. In any case, the numeric models,
the approximation, and the measurements agree to a good IF 0(q)I2STF(q)
extent. It is seen from Fig. 2 that for finite A the signal in SNR(q) = 2 (36)
the KT cross spectra is always smaller than the signal for the N

Labeyrie case A = 0. However, the requirements for the so we finally obtain
magnitude of A appear to be less stringent than was previ- r STF(q) 12
ously believed. In the approximation, the signal has half the 1 S)(37)
magnitude of the Labeyrie signal if A = 0.6 a, and even for A N SNR(q) LCTFA(q)j
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If the signal-to-noise ratio of the Labeyrie signal is known, The variance of the error of the reconstructed object phase
relation (37) may be used to estimate the contribution of is given by the sum of the error variances of the cross-
noise to the error of cross-spectrum phases and therefore to spectrum phase values that were added to arrive at a given
the error in the reconstructed phase. To illustrate this, let object phase, and it therefore increases with increasing fre-
us assume a simple, practical case in which image Fourier quency index. Figure 6(a) represents the resulting rms er-
transforms are known along only one spatial-frequency di- ror of the reconstructed object phase, assuming a frequency-
mension. Data of this type are obtained if, e.g., the speckle independent signal-to-noise ratio.
pattern of a resolved source in the focal plane of an infrared The proper choice of the magnitude of A results in opti-
telescope is scanned by using a narrow slit followed by a mally small rms phase errors, as illustrated in Fig. 6(b). The
single infrared detector.2 0 For a given frequency spacing A, rms object phase error is presented as a function of A, and it
the cros spectrum phase 'Pk is given at discrete spatial fre- is seen that for otherwise fixed conditions, the rms error has

quencies qk = (0, 4, 2A. kA,. Ka), where K is the a minimum for a certain value of the frequency shift. For
largest integer number smaller than l/A. Object phases C small A, the cross-spectrum error is small, but many summa-

can be recovered at the same discrete frequencies by apply- tions are required in order to arrive at a given frequency,
ing a simple summation algorithm: while for large A, the cross-spectrum errors by themselves

k are large. Although the optimal choice for A is 0.4a, the rms
S= Ck-I + 0k, € = 0 or Ck = ' ' (38) phase error remains fairly small over a wide range. There-

S+0oop (8 fore I conclude that the magnitude of A may be chosen
within the range from A = 0.2a to A = 0.8a without introduc-
ing severe phase errors due to random noise into the recon-

0.6- astruction.

Another application of the results presented here is the
recovery of the full object Fourier transform from the KT

0.6 cross spectra. Although the KT algorithm is applied mainly
to recover object phases, object amplitudes can be obtained

0 .5 as well if cross spectra are calibrated properly for seeing
effects. The main advantage is that average power spectra

no longer need to be calculated, which may be a matter of

"0.3 concern if the algorithm is to be applied in real time. If a
quick-look reconstruction is all that is asked for or if a
suitable reference source is missing but r0 is known, the

0. amplitude recalibration can be done by using the models

presented here. The reconstruction algorithm that applies

to the simple, one-dimensional case discussed above is given

0.00 a.20 0.40 0.60 0.0 1.00 by
relative wave number

a).,k- = FF I , Fu o = 1, (39)
' CTF,,,,,-

l2 / where (Fi,kF..l) represents the observed cross spectrum at

APO a frequency index k, CTFA, is the CTF value at that index,

% 1 0 - and Fo,, represents the reconstructed Fourier-transform val-
ue.

S0.7

A +APPENDIX A: EXTENSION OF KORFF'S
ANALYSIS TO THE KNOX-THOMPSON

0 5 s- + 0 TECHNIQUE

.+, + 0We begin the analysis with Eq. (10) of Subsection 3.A:
0• 2 0 o I. + ,.+ + 0

0 o 0 CTFAq) = W(r + q/2) W* (r - q/2)

0.00 0.02 0.05 0.07 0. 10 0.12 XexpUj[(r + q/2) - o(r - q/2)ldr

(b) X W*[r' + (q - A)/21W[r' - (q - A)/21
O Figs. 6. Phase error in the reconstruction for the one-dimensional f f
0 reconstruction algorithm [Eqs. (38)]. The approximate result in

Eq. (26) was used for the STF/CTF ratio in Eq. (37). (a) Phase X exp(jl-0[r' + (q - A)/2]
error as a function of frequency for 1A = 0.02 and a = 0.1 and values
for the product of SNR and the frame number N of (in descending + 4[r' + (q -A)/2])dr'•
order of the curves) 1')0, 200, 500, and 1000. (b) Reconstructed rms
phab erru dveraged over all spatial frcj.-, n.i- n. a function of 1A),
for a = 0.1. N(SNR) values: A, 200; +, 500; 0, 1000. We rewrite the product of integrals as multiple integrals,

L
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regroup factors, and perute integration and ensemble aver- CTFA)= W(r+q/2)W,(r-q/2)

aging: C f f f
CTF4(q) = f iff W(r + q/2) W*(r - q/2) X W*(r' + (q - A)/2)W[r' - (q - A)/21

X expl- '/, [D(q) + D(q - A) + D(r - r' + A/2)
X W* [r' + (q - A)/21 W[r' - (q - A)/21

+ D(r - r'- A/2) - D(q + r - r' - A/2)
X (exp(jlt¢(r + q/2) - ¢(- q/2)

- 0[r' + (q - A)/2] + 0[r' - (q - A)/2]))drdr'. - D(q - r + r' - A/2)Idrdr'. (A6)

(Al) The exponent in Eq. (A6) depends on only the difference r -
r'. A change of variables is therefore made:

The next tep involves the evaluation of the ensemble r + r', r-

average in Eq. (Al). Similar expressions were treated by a + r a = r -Ar'

Fried' 0 and by Korff.9 A brief justification of those treat- r a + r' = --.

ments is given by Roddier (Ref. 11, p. 293). We state the 2 2

result: We then obtain the final, general result for the transfer

exp(jo(r + q/2) - 0(r - q/2) - [r' + (q - A)/21 function of KT cross spectra:

ex(- +q2+[r' -(q-A)/2]})) CTFA(q) = fff +W( +q+))w.(a+ -

exp(- '/2 10(r + q/2) - 0(r - q/2) - ¢ [r' + (q - A)/2] f 2

+ 0[r' - (q - A)/21 12 )). (A2) X< W* a - 6+ q - A' wa -56- q + A)do-

We next analyze Eq. (A2) in order to express the phases \ 2 2

* in terms of structure functions. Partial evaluation of the X expl- 1/2 [D(q) + D(q - A) + D(O + A/2)

square in the right-hand side of Eq. (A2) results in + D(b - A/2) - D(q - A/2 + 6)

(10(r + q/2) - 0(r - q/2) - 0[r' + (q - A)/21 - D(q - A/2 - 6)]}db

+ 0[r'- (q - A)/2]12 )

- - ([0(r + q/2) - 0(r - q/2)]2) + (10[r' + (q + A)/2]

- Or' - (q - A)/2]12 ) - (20(r + q/2)0[r' + (q - A)/2]) ACKNOWLEDGMENTS

, - (2P(r - q/2)¢[r' + (q - A)/2]) This research was done while the author held a National

+ (20(r - q/2)¢(r' + (q - A)/2)) Research Council-U.S. Air Force Geophysics Laboratory

+ ( 2o(r + q/2)k[r' + (q - A)/2]). (A3) Research Associateship. The suggestion by Christian Perri-
er (Observatoire de Lyon) to perform the noise analysis

The first two terms in Eq. (A3) arp already structure func- presented here is greatly appreciated. The numerical work

tion terms. The other four terms may be rewritten in struc- was carried out on the VAX 750 computer at the National

ture functions if Eq. (A3) is expanded by the following Solar Observatory in Sunspot, New Mexico.

terms, which add to zero:

0 2(r + q/2) + (0 2(r' + (q - A)/2)) + (¢ 2(r - q/2)) REFERENCES

'p.- + (o 2 (r' - (q + A)/2)) - (0 2 (r + q/2)) 1. K. T. Knox and B. J. Thompson, "Recovery of images from
- ((p2 atmfcspheric!ly degrsded Phort exposure photographs," As-

- (0 2(r' + (q - A)/2)) - (¢ 2(r - q/2)) trophys. J. 193, L45-L48 (1974).
2. A. Labeyrie, "Attainment uf diffraction-limited resolution in

- ( 2 [r' - (q + A)/2] ). (A4) large telescopes by Fourier-analyzing speckle patterns in star
images," Astron. Astrophys. 6, 85-87 (1970).

Now, by using Eq. (5), Eq. (A3) becomes 3. G. Weigelt and B. Wirnitzer, "Image reconstruction by the
10r + qspeckle-masking method," Opt. Lett. 8, 389-391 (1983).

(b(r + q/2) - ¢(r - q/2) - ¢[r' + (q - A)/2] 4. P. Nisenson, R. V. Stachnik, M. Karovska, and R. W. Noyes, "A
+ O' - (q - A/2 1 2 1 new optical source associated with T Tauri," Astrophys. J. 297,

[Or+q)-0r-q2 2 L17-L20 (1985).
* - ([¢(r + q/2) - ¢(r - q/2)]2 2 5. R. V. Stachnik, P. Nisenson, and R. W. Noyes, "Speckle image

+ (I0[r' + (q + A)/21 - 0[r' - (q - A)/21f 12  reconstruction of solar features," Astrophys. J. 271, L37-L40
+ (10(r + q/2) - oir' + (q - A)/21% (1983).

+2) -6. D. L. Fried, "Angular dependence of the atmospheric turbu-

+ 'i'(r - (q/2) - 0[r' + (q - A)/21 2 ) lence effect in speckle interferometry," Opt. Acta 26, 597-613
([,(r - q/2) - Or' + (q - A)/2)1 2 ) (1979).
-[(r + (q/2) - (r' - (q - A)/2 )]2) 7. 0. von der Luhe, "High resolution speckle imaging of solar small

-([¢(r + (q/2) - ¢(r' - (q - A)/2)]2 )  scale structure: the influence of anisoplanatism," in High Res-
D(q) + D(q - A) + D(r - r' + A/2) olution in Solar Physics, Vol. 233 of Lecture Notes in Physics,

R. Muller, ad. (Springer -Verlag, Berlin, 1985), pp. 96-102.
+ D(r - r' - A/2) - D(q + r - r' - A/2) 8. C. Leinert and M. Haas, "Infrared speckle interferometry on

- D(q - r + r' - A/2). (A5) Calar Alto," in High Resolution Interferometric Imaging from
the Ground, Proceedings of the Joint European Southern Ob-

Inserting Eqs. (A5) and (A2) into Eq. (Al) yield, servatary-National UpLical Astronomy Observatories Confer-



Oskar vdcr LUihe Vol. 5, No. 5/May 1988/,J. Opt. Soc. Am. A 729

ence (National Optical Astronomy Observatories, Tucson, Ariz., the spectral components of astonomical images," ,J. Opt. Soc.
1987), pp. 233-236. Am. 66, 478-482 (1976).

9. D. Korff, "Analysis of a method for obtaining near-diffraction- 16. M. Bertolotti, M. Carnevale, A. Consortini, and L. Ronchi, Op.
limited information in the presence of atmospheric turbulence," tical propagation: problems and trends," Opt. Acta 26, 507-529
J. Opt. Soc. Am. 63, 971-980 (1973). (1979).

10. D. L. Fried, "Optical resolution through a randomly inhomo- 17. D. P. Karo and A. M. Schneidermann, "Transfer functions,
geneous medium for very short and very long exposures," J. Opt. correlation scales, and phase retrieval in speckle interferone-
Soc. Am. 56, 1372-1379 (1966). try," J. Opt. Soc. Am. 67, 1583-1587 (1977).

11. F. Roddier, "The effects of atmospheric turbulence in optical 18. R. Deron and J. C. Fontanella, "Restauration d'images d6gra-
astronomy," in Progress in Optics, E. Wolf, ed. (Elsevier, New d6es par la turbulence atmosph~rique selon la m6thode de Knox
York, 1981), Vol. XIX. et Thompson," J. Opt. (Paris) 15, 15-23 (1984).

12. V. 1. Tatarskii, The Effects of the Turbulent Atmosphere on 19. 0. von der LUihe and R. B. Dunn, "Solar granulation power
Wavc Propagation, (Israel Program for Scientific TranslAtions, spectra from speckle interferometry," Astron. Astrophys. 177,
.Jerusalem, 1971). 265--276 (1987).

13. R. Barakat and P. Nisenson, "Influence of the wave-front corre- 20. J. D. Freeman, J. C. Christou, F. Roddier, D. W. McCarthy, Jr.,
lation function and deterministic wave-front aberrations on the and M. C. Cobb, "Application of triple correlation to one-di-
speckle image reconstruction problem." J. Opt. Soc. Am. 71, mensional infrared speckle data," in High Resolution Interfero-
1390-1402 (1981). metric Imaging from the Ground, Proceedings of the Joint

14. ,J. B. Breckinridge, "Measurement of the amplitude of phase European Southern Observatory-National Optical Astronomy
excursions in the earth's atmosphere," .1. Opt. Soc. Am. 66, 143- Observatories Conference (National Optical Astronomy Obser-
144(1976). vatories, Tucson, Ariz., 1987), pp. 47-50.

15. C. Roddier, "Measurements of the atmospheric attenuation of


